
The 13'h Technology of Deep Space One
Abstract

Nicolas Rouquette & Peter Gluck
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California, USA

On October 24th, 1998, the Deep Space One @S-1) spacecraft launched aboard a Delta 11 rocket
as the first step towards the bold task of testing and validating 12 new technologies for future
missions. This launch also represented yet another thrilling event; namely, the successful test and
validation of a 13th heretofore undisclosed technology: model-based code-generation of the
spacecraft's system-level fault-protection (FP) software from behavioral state diagrams and
structural models. uair;d,f&,

Until DS-1, the Jet Propulsion Laboratory (JPL) had not used code-generation techniques on
large scale for avionics software. However, the constraints of the mission design and
development cycle, limited budget and resources dictated a departure from past practices. The
analysis of the system-level issues started in March 1997 with minimal staff while the actual
design and development of the fault-protection engine started in earnest in June 1997. Radical
departures from past projects were necessary to complete the design, development and testing of
the system-level fault-protection in time for launch. The requirement that post-launch activities
be directed by fault protection further increased the difficulty of the task; on other spacecraft,
such activities are typically handled with sequences.

First, a decision was made in June to use the successful Mars Pathfinder (MPF) fault-protection
engine because this system made a nice separation of the various concerns between detecting
faults, signaling faults and executing fault responses. However, the limited resources available
precluded a duplication of MPFs design and development approach because we had too few
software engineers and too much uncertainty about the hardware, the flight software and the
scope of the system-level issues. This high degree of uncertainty translates into a high degree of
design instability and volatility. To accommodate this difficult state of affairs, we shifted the
design and development of the system-level fault-protection software from low-level concerns
about the C language to higher-level concerns about system-level requirements, issues, strategy,
and tradeoffs. To make this top-down design approach work in a team environment while
retaining sufficient implementation flexibility, we standardized on using state diagrams and
attribute specifications as design notations for describing the behavior and structure of fault-
protection designs.

In this paper, we describe the process we used to leverage model-based code generation from
state diagrams and structural specifications to better respond to the evolving requirements and
scope of DS-1's system-level fault-protection design, development, test and operation. The
evolution of the high-level design and the low-level changes in the flight software architecture
and interfaces contributed to multiplying the number and frequency of fault-protection software
releases thereby creating a multitude of software integration issues. To address the resulting
software integration issues, we broadened the scope of code generation to other forms of model-
based analysis techniques more traditionally associated with first-principle's reasoning about
physical models. Additionally, we describe our in-flight launch and initial acquisition
experience.

